sknrf.model.transform.base module

class sknrf.model.transform.base.GoodnessOfFit(ports=(1,))

Bases: AbstractModel

calculate(A, x_, y)

Calculate the goodness of fit.

Parameters:
Atensor

MxN problem matrix.

x_tensor

NX1 expected input data

ytensor

1XM actual output data

staticMetaObject = PySide6.QtCore.QMetaObject("GoodnessOfFit" inherits "AbstractModel": )
class sknrf.model.transform.base.AbstractTransform(name: str, ports: tuple, instrument_flags=InstrumentFlag.ALL)

Bases: Module, AbstractModel

display_order = ['name', 'ports']
optimize = True
training: bool = True
release()
color()

The color code assigned to the transform.

Returns:
str

A color code.

property ports

Tuple[int]: Ports that apply the transform

property instrument_flags

Instrument: Instruments that apply the transform

staticMetaObject = PySide6.QtCore.QMetaObject("AbstractTransform" inherits "AbstractModel": )